微分方程:y’=f x,y 方向场的积分曲线几何问题 Lecture 01 The geometrical view of y’=f x,y direction fields, integral curves mp4
文章类别:
快捷索引
课程概述:
微分方程是一门表述自然法则的语言。理解微分方程解的性质,是许多当代科学和工程的基础。常微分方程(ODE’s)是关于单变量的函数,一般可以认为是时域变量。学习内容包括:利用解释、图形和数值方法求解一阶常微分方程,线性常微分方程,尤指二阶常系数方程,不定系数和参变数,正弦和指数信号:振动、阻尼和共振,复数和幂,傅立叶级数,周期解,Delta函数、卷积和拉普拉斯变换方法,矩阵和一阶线性系统:特征值和特征向量,非线性独立系统:临界点分析和相平面图。
导师概述
Arthur Mattuck is a tenured Professor of Mathematics at the Massachusetts Institute of Technology. He may be best known for his 1998 book, Introduction to Analysis (ISBN 013-0-81-1327) and his differential equations video lectures featured on MIT’s OpenCourseWare. Inside the department, he is well known to graduate students and instructors, as he watches the videotapes of new recitation teachers (an MIT-wide program in which the department participates).
截图:
微分方程:y’=f x,y 方向场的积分曲线几何问题 Lecture 01 The geometrical view of y’=f x,y direction fields, integral curves mp4 → https://www.books51.com/228274.html |
下一篇: MIT开放课程 振动与波 Open MIT Course Vibrations and Waves Course Introduction mp4
最新评论