Hsieh Po-Fang, Sibuya Yasutaka, Basic Theory of Ordinary Differential Equations, Springer 1999, HEP 2007 480s _WPCBJ_ djvu
文章类别:
- 23 11 月, 2022
- 0 条评论
你必须注册后才能投票!
快捷索引
常微分方程数值解
概述:
常微分方程数值解为开展常微分方程研究工作的读者提供必要的准备知识,可作为本科高年级和研究生常微分方程课程教材。常微分方程基础理论(影印版)内容分为四部分:第一部分(第一、二、三章)的内容包括解的存在性、唯一性、对数据的光滑依赖性,以及解的非唯一性;第二部分(第四、六、七章)讨论线性常微分方程。
常微分方程数值解中用矩阵的S-N分解代替Jordan分解,前者的计算较后者更容易;第三部分(第八、九、十章)讨论非线性常微分方程的稳定性、渐近稳定性等几何理论;第四部分(第五、十一、十二、十三章)讨论常微分方程的幂级数解,包括线性常微分方程的奇点分类及非线性常微分方程当参数或自变量趋向某奇点时的渐近解等。
常微分方程数值解
内容截图:
常微分方程数值解 目录:
Preface
Chapter Ⅰ.Fundamental Theorems of Ordinary Differential Equations
Ⅰ-1.Existence and uniqueness with the Lipschitz condition
Ⅰ-2.Existence without the Lipschitz condition
Ⅰ-3.Some global properties of solutions
Ⅰ-4.Analytic differential equations
Exercises Ⅰ
ChapterⅡ.Dependence on Data
Ⅱ-1.Continuity with respect to initial data and parameters
Ⅱ-2.Differentiability
Exercises Ⅱ
Chapter Ⅲ.Nonuniqueness
Ⅲ-1.Examples
Ⅲ-2.The Kneser theorem
Ⅲ-3.Solution curves on the boundary of R(A)
Ⅲ-4.Maximal and minimal solutions
Ⅲ-5.A comparison theorem
Ⅲ-6.Sufficient conditions for uniqueness
Exercises Ⅲ
Chapter Ⅳ.General Theory of Linear Systems
Ⅳ-1.Some basic results concerning matrices
Ⅳ-2.Homogeneous systems of linear differential equations
Ⅳ-3.Homogeneous systems with constant coefficients
Ⅳ-4.Systems with periodic coefficients
Ⅳ-5.Linear Hamiltonian systems with periodic coefficients
Ⅳ-6.Nonhomogeneous equations
Ⅳ-7.Higher-order scalar equations
Exercises Ⅳ
Chapter Ⅴ.Singularities of the First Kind
Ⅴ-1.Formal solutions of an algebraic differential equation
Ⅴ-2.Convergence of formal solutions of a system of the first kind
Ⅴ-3.The S-N decomposition of a matrix of infinite order
Ⅴ-4.The S-N decomposition of a differential operator
Ⅴ-5.A normal form of a differential operator
Ⅴ-6.Calculation of the normal form of a differential operator
Ⅴ-7.Classification of singularities of homogeneous linear systems
Exercises Ⅴ
Chapter Ⅵ.Boundary-Value Problems of Linear Differential Equations of the Second-Order
Ⅵ-1.Zeros of solutions
Ⅵ-2.Sturm-Liouville problems
Ⅵ-3.Eigenvalue problems
Ⅵ-4.Eigenfunction expansions
Ⅵ-5.Jost solutions
Ⅵ-6.Scattering data
Ⅵ-7.Refiectionless potentials
Ⅵ-8.Construction of a potential for given data
Ⅵ-9.Differential equations satisfied by reflectionless potentials
Ⅵ-10.Periodic potentials
Exercises Ⅵ
Chapter Ⅶ.Asymptotic Behavior of Solutions of Linear Systems
Ⅶ-1.Liapounoff’s type numbers
Ⅶ-2.Liapounoff’s type numbers of a homogeneous linear system
Ⅶ-3.Calculation of Liapounoff’s type numbers of solutions
Ⅶ-4.A diagonalization theorem
Ⅶ-5.Systems with asymptotically constant coefficients
Ⅶ-6.An application of the Floquet theorem
Exercises Ⅶ
Chapter Ⅷ.Stability
Ⅷ-1.Basic definitions
Ⅷ-2.A sufficient condition for asymptotic stability
Ⅷ-3.Stable manifolds
Ⅷ-4.Analytic structure of stable manifolds
Ⅷ-5.Two-dimensional linear systems with constant coefficients
Ⅷ-6.Analytic systems in R2
Ⅷ-7.Perturbations of an improper node and a saddle point
Ⅷ-8.Perturbations of a proper node
Ⅷ-9.Perturbation of a spiral point
Ⅷ-10.Perturbation of a center
Exercises Ⅷ
Chapter Ⅸ.Autonomous Systems
Ⅸ-1.Limit-invariant sets
Ⅸ-2.Liapounoff’s direct method
Ⅸ-3.Orbital stability
Ⅸ-4.The Poincare-Bendixson theorem
Ⅸ-5.Indices of Jordan curves
Exercises Ⅸ
Chapter Ⅹ.The Second-Order Differential Equation (d2x)/(dt2)+h(x)*(dx)/(dt)+g(x)=0
Ⅹ-1.Two-point boundary-value problems
Ⅹ-2.Applications of the Liapounoff functions
Ⅹ-3.Existence and uniqueness of periodic orbits
Ⅹ-4.Multipliers of the periodic orbit of the van der Pol equation
Ⅹ-5.The van der Pol equation for a small ε > 0
Ⅹ-6.The van der Pol equation for a large parameter
Ⅹ-7.A theorem due to M.Nagumo
Ⅹ-8.A singular perturbation problem
Exercises Ⅹ
Chapter Ⅺ.Asymptotic Expansions
Ⅺ-1.Asymptotic expansions in the sense of Poincare
Ⅺ-2.Gevrey asymptotics
Ⅺ-3.Flat functions in the Gevrey asymptotics
Ⅺ-4.Basic properties of Gevrey asymptotic expansions
Ⅺ-5.Proof of Lemma Ⅺ-2-6
Exercises Ⅺ
Chapter Ⅻ.Asymptotic Expansions in a Parameter
Ⅻ-1.An existence theorem
Ⅻ-2.Basic estimates
Ⅻ-3.Proof of Theorem Ⅻ-1-2
Ⅻ-4.A block-diagonalization theorem
Ⅻ-5.Gevrey asymptotic solutions in a parameter
Ⅻ-6.Analytic simplification in a parameter
Exercises Ⅻ
Chapter ⅩⅢ.Singularities of the Second Kind
ⅩⅢ-1.An existence theorem
ⅩⅢ-2.Basic estimates
ⅩⅢ-3.Proof of Theorem ⅩⅢ-1-2
ⅩⅢ-4.A block-diagonalization theorem
ⅩⅢ-5.Cyclic vectors (A lemma of P.Deligne)
ⅩⅢ-6.The Hukuhara-Turrittin theorem
ⅩⅢ-7.An n-th-order linear differential equation at a singular point of the second kind
ⅩⅢ-8.Gevrey property of asymptotic solutions at an irregular singular point
Exercises ⅩⅢ
References
Index
常微分方程数值解
【注】
《常微分方程数值解》从网络收集,免费分享!对您有助,是本站最大的荣幸。
《常微分方程数值解》禁用于商业用途!如果您喜欢《常微分方程数值解》,请耐心下载,ED2K资源需要有人做种,有时冷门资源需挂机等待。有特别需要的请去论坛求助资源,推荐大家用百度云盘共享。
书我要,下载先! http://www.books51.com/ 祝您开卷有益!
会员福利
同类文章
文章类别:
本文链接: https://www.books51.com/269598.html
【点击下方链接,复制 & 分享文章网址】
Hsieh Po-Fang, Sibuya Yasutaka, Basic Theory of Ordinary Differential Equations, Springer 1999, HEP 2007 480s _WPCBJ_ djvu → https://www.books51.com/269598.html |
上一篇: 经济学人-卡西欧电子词典专用版 The Economist – 2010-05-01 txt
下一篇: 经济学基础文献选读 罗卫东 扫描版
你必须注册后才能投票!
最新评论