快捷索引


黎曼几何


概述:
黎曼几何是以作者在法国巴黎任教“黎曼几何和流行分析”研究生课程的讲义形成的。本书详细给出了曲率与拓扑学之间关系的经典结果,图文并茂,直观清晰。内容包括微分流行、黎曼度量、Levi-Civita连通、测地线和曲率,并特别强调他们的内蕴性质。
黎曼几何是一部值得一读的研究生教材,内容主要涉及黎曼几何基本定理的研究,如霍奇定理、rauch比较定理、lyusternik和fet定理调和映射的存在性等。另外,黎曼几何中还有当代数学研究领域中的最热门论题,有些内容则是首次出现在教科书中。
黎曼几何


内容截图

黎曼几何 目录:
1 Differential manifolds
1.A From submanifolds to abstract manifolds
1.A.1 Submanifolds of Euclidean spaces
1.A.2 Abstract manifolds
1.A.3 Smooth maps
1.B The tangent bundle
1.B.1 Tangent space to a submanifold of Rn+k
1.B.2 The manifold of tangent vectors
1.B.3 Vector bundles
1.B.4 Tangent map
1.C Vector fields
1.C.1 Definitions
1.C.2 Another definition for the tangent space
1.C.3 Integral curves and flow of a vector field
1.C.4 Image of a vector field by a diffeomorphism
1.D Baby Lie groups
1.D.1 Definitions
1.D.2 Adjoint representation
1.E Covering maps and fibrations
1.E.1 Covering maps and quotients by a discrete group
1.E.2 Submersions and fibrations
1.E.3 Homogeneous spaces
1.F Tensors
1.F.1 Tensor product(a digest)
1.F.2 Tensor bundles
1.F.3 Operations on tensors
1.F.4 Lie derivatives
1.F.5 Local operators, differential operators
1.F.6 A characterization for tensors
1.G Differential forms
1.G.1 Definitions
1.G.2 Exterior derivative
1.G.3 Volume forms
1.G.4 Integration on an oriented manifold
1.G.5 Haar measure on a Lie group
1.H Partitions of unity
2 Riemannian metrics
2.A Existence theorems and first examples
2.A.1 Basic definitions
2.A.2 Submanifolds of Euclidean or Minkowski spaces
2.A.3 Riemannian submanifolds, Riemannian products
2.A.4 Riemannian covering maps, flat tori
2.A.5 Riemannian submersions, complex projective space
2.A.6 Homogeneous Riemannian spaces
2.B Covariant derivative
2.B.1 Connections
2.B.2 Canonical connection of a Riemannian submanifold
2.B.3 Extension of the covariant derivative to tensors
2.B.4 Covariant derivative along a curve
2.B.5 Parallel transport
2.B.6 A natural metric on the tangent bundle
2.C Geodesics
2.C.1 Definition, first examples
2.C.2 Local existence and uniqueness for geodesics,exponential map
2.C.3 Riemannian manifolds as metric spaces
2.C.4 An invitation to isosystolic inequalities
2.C.5 Complete Riemannian manifolds, Hopf-Rinow theorem.
2.C.6 Geodesics and submersions, geodesics of PnC:
2.C.7 Cut-locus
2.C.8 The geodesic flow
2.D A glance at pseudo-Riemannian manifolds
2.D.1 What remains true?
2.D.2 Space, time and light-like curves
2.D.3 Lorentzian analogs of Euclidean spaces, spheres and hyperbolic spaces
2.D.4 (In)completeness
2.D.5 The Schwarzschild model
2.D.6 Hyperbolicity versus ellipticity
3 Curvature
3.A The curvature tensor
3.A.1 Second covariant derivative
3.A.2 Algebraic properties of the curvature tensor
3.A.3 Computation of curvature: some examples
3.A.4 Ricci curvature, scalar curvature
3.B First and second variation
3.B.1 Technical preliminaries
3.B.2 First variation formula
3.B.3 Second variation formula
3.C Jacobi vector fields
3.C.1 Basic topics about second derivatives
3.C.2 Index form
3.C.3 Jacobi fields and exponential map
3.C.4 Applications
3.D Riemannian submersions and curvature
3.D.1 Riemannian submersions and connections
3.D.2 Jacobi fields of PnC
3.D.3 O’Neill’s formula
3.D.4 Curvature and length of small circles.Application to Riemannian submersions
3.E The behavior of length and energy in the neighborhood of a geodesic
3.E.1 Gauss lemma
3.E.2 Conjugate points
3.E.3 Some properties of the cut-locus
3.F Manifolds with constant sectional curvature
3.G Topology and curvature: two basic results
3.G.1 Myers’ theorem
3.G.2 Cartan-Hadamard’s theorem
3.H Curvature and volume
3.H.1 Densities on a differentiable manifold
3.H.2 Canonical measure of a Riemannian manifold
3.H.3 Examples: spheres, hyperbolic spaces, complex projective spaces
3.H.4 Small balls and scalar curvature
3.H.5 Volume estimates
3.I Curvature and growth of the fundamental group
3.I.1 Growth of finite type groups
3.I.2 Growth of the fundamental group of compact manifolds with negative curvature
3.J Curvature and topology: some important results
3.J.1 Integral formulas
3.J.2 (Geo)metric methods
3.J.3 Analytic methods
3.J.4 Coarse point of view: compactness theorems
3.K Curvature tensors and representations of the orthogonal group
3.K.1 Decomposition of the space of curvature tensors
3.K.2 Conformally flat manifolds
3.K.3 The Second Bianchi identity
3.L Hyperbolic geometry
3.L.1 Introduction
3.L.2 Angles and distances in the hyperbolic plane
3.L.3 Polygons with "many" right angles
3.L.4 Compact surfaces
3.L.5 Hyperbolic trigonometry
3.L.6 Prescribing constant negative curvature
3.L.7 A few words about higher dimension
3.M Conformal geometry
3.M.1 Introduction
3.M.2 The MSbius group
3.M.3 Conformal, elliptic and hyperbolic geometry
4 Analysis on manifolds
4.A Manifolds with boundary
4.A.1 Definition
4.A.2 Stokes theorem and integration by parts
4.B Bishop inequality
4.B.1 Some commutation formulas
4.B.2 Laplacian of the distance function.
4.B.3 Another proof of Bishop’s inequality
4.B.4 Heintze-Karcher inequality
4.C Differential forms and cohomology
4.C.1 The de Rham complex
4.C.2 Differential operators and their formal adjoints
4.C.3 The Hodge-de Rham theorem
4.C.4 A second visit to the Bochner method
4.D Basic spectral geometry
4.D.1 The Laplace operator and the wave equation
4.D.2 Statement of basic results on the spectrum
4.E Some examples of spectra
4.E.1 Introduction
4.E.2 The spectrum of flat tori
4.E.3 Spectrum of (Sn,can)
4.F The minimax principle
4.G Eigenvalues estimates
4.G.1 Introduction
4.G.2 Bishop’s inequality and coarse estimates
4.0.3 Some consequences of Bishop’s theorem
4.G.4 Lower bounds for the first eigenvalue
4.H Paul Levy’s isoperimetric inequality
4.H.1 The statement
4.H.2 The proof
5 Riemannian submanifolds
5.A Curvature of submanifolds
5.A.1 Second fundamental form
5.A.2 Curvature of hypersurfaces
5.A.3 Application to explicit computations of curvatures
5.B Curvature and convexity
5.C Minimal surfaces
5.C.1 First results
5.C.2 Surfaces with constant mean curvature
A Some extra problems
B Solutions of exercises
Bibliography
Index
List of figures
黎曼几何
【注】
《黎曼几何》从网络收集,免费分享!对您有助,是本站最大的荣幸。
《黎曼几何》禁用于商业用途!如果您喜欢《黎曼几何》,请耐心下载,ED2K资源需要有人做种,有时冷门资源需挂机等待。有特别需要的请去论坛求助资源,推荐大家用百度云盘共享。
书我要,下载先! http://www.books51.com/ 祝您开卷有益!



会员福利

资源无源时,可利用百度网盘 & 迅雷云盘取回

此内容仅供注册用户。请 %登录%.

神秘内容,请 登录 / 注册 后查看

会员可见全站福利 !




文章类别:

本文链接: https://www.books51.com/269570.html

【点击下方链接,复制 & 分享文章网址】

Gallot, Hulin, Lafontaine, Riemannian Geometry, 3rd ed Springer 2004, WPCBJ 2008, 337s djvu → https://www.books51.com/269570.html

上一篇:

下一篇:

0 ratings, 0 votes0 ratings, 0 votes (0 次顶, 0已投票)
你必须注册后才能投票!
Loading...

添加新评论